aper 3	B/4B: Further Statistics 1	. Mark Schemes		MNNN MY
Questio	n Scł	heme	Marks	AOs
1	$H_{o}: \lambda = 5 \ (\lambda = 2.5) \qquad H_{1}: \lambda > 5$	$H_0: \lambda = 5 \ (\lambda = 2.5) \qquad H_1: \lambda > 5 \ (\lambda > 2.5)$		2.5
	<i>X</i> ~ F	X~Po (2.5)		3.3
	Method 1:	Method 2:		
	$P(X \ge 7) = 1 - P(X \le 6)$ $= 1 - 0.9858$	$P(X \ge 5) = 0.1088$ $P(X \ge 6) = 0.042$	M1	1.1b
	= 0.0142	$\operatorname{CR} X \ge 6$	A1	1.1b
	Reject H ₀ . There is evidence at t level of pollution has increased.	in critical region or 7 is significant the 5% significance level that the or scientists claim is justified	Alcso	2.2b
			(5 1	narks)
B1: R	Both hypotheses correct using λ or μ and 5 or 2.5 Realising that the model Po(2.5) is to be used. This may be stated or used			
a	Using or writing $1 - P(X \le 6)$ or $1 - P(X < 7)$ a correct CR or $P(X \ge 5) = awrt 0.109$ and $P(X \ge 6) = awrt 0.042$ awrt 0.0142 or CR $X \ge 6$ or $X > 5$			
	A fully correct solution and drawing a correct inference in context			

Paper 3B/4B: Further Statistics 1 Mark Schemes

		12	MW. MYM
Question	Scheme	Marks	AOs
2(a)	$P(X \ge 1) = 1 - P(X = 0)$ 1 - P(X = 0) = 0.049	B1	3.1b
	P(X=0) = 0.951	B1	1.1b
	$x^5 = 0.951$ x = 0.99	M1	3.1b
	<i>p</i> = 0.01	A1	1.1b
	X~B(1000, 0.01)	M1	3.3
	Mean = $np = 10$	Alft	1.1b
	Variance = $np(1-p) = 9.9$	Alft	1.1b
		(7)	
(b)	$X \sim \text{Po}(``10")$ then require: $P(X > 6) = 1 - P(X \le 6)$	M1	3.4
	= 1 - 0.1301		
	= 0.870	A1	1.1b
		(2)	
(c)	The approximation is valid as : the number of calls is large	B1	2.4
	The probability of connecting to the wrong agent is small	B1	2.4
		(2)	
(d)	The answer is accurate to 2 decimal place	B1	3.2b
		(1)	
Notes:		(12 r	narks)
B1: Calc M1: Forr A1: 0.01 M1: Real A1: Mea A1: Var b) M1: Usir A1: usir A1: awrth c) Control	lising that the P(at least 1 call) = $1 - P(X = 0)$ sulating P(X = 0) = 0.951 ning the equation x^5 = "their 0.951" may be implied by $p = 0.01$ only lising the need to use the model B(1000, 0.01) This may be stated or u n =10 or ft their p but only if $0 = 9.9 or ft their p but only if 0 mg the model Po("their 10") (this may be written or used) and 1 - P(X = 0.870 \text{ Award M1 A1 for awrt 0.870 with no incorrect working})$	<i>Z</i> ≤ 6)	
B1: Nee d)	d the context connecting, wrong agent luating the accuracy of their answer in (b). Allow 2 significant figures		

			4	AOs
			Maulus	
uestion	Sch		Marks	AUS
3 (a)	Expected value for $2 = 150 \times P(X = 2)$		M1	3.4
	= 28.3015		A1	1.1b
	Expected value for 4 or more = 13 = 2 .		Alft	1.1b
	H ₀ : Bin(20, 0.05) is a suitable mo H ₁ : Bin(20, 0.05) is not a suitable		B1	2.5
	Combining last two groups			
		≥ 3	M1	2.1
	Observed frequency	19		2.1
	Expected frequency	11.3		
	v = 4 - 1 = 3		B1	1.1b
	Critical value, $\chi^2 (0.05) = 7.815$		B1	1.1a
	Test statistic = $\frac{(43-53.8)^2}{53.8} + \frac{(62)^2}{53.8}$	$\frac{-56.6)^2}{56.6} + \dots$	M1	1.1b
		= 8.117	A1	1.1b
	In critical region, sufficient evider Significant evidence at 5% level t		A1	3.5a
			(10)	
(b)	v = 4 - 2 = 2			
	4 classes due to pooling		B1	2.4
	2 restrictions (equal total and mea	n/proportion)	B1	2.4
			(2)	
(c)	H ₀ : Binomial distribution is a goo H ₁ : Binomial distribution is not a		B1	3.4
	Critical value, $\chi^2 (0.05) = 5.991$ Test statistic is not in critical region H ₀ There is evidence that the Binomi	on, insufficient evidence to reject	B1	3.5a
			(2)	
			(14 n	narks)

)ues	ion 3 notes:
(a)	
M1:	Using the binomial model $_{150 \times p^{2} \times (1-p)^{18}}$ may be implied by 28.3
A1: A1:	awrt 28.3 awrt 2.4 or ft their "28.3"
B1:	Both hypotheses correct using the correct notation or written out in full
M1:	For recognising the need to combine groups
B1:	Number of degrees of freedom = $3 \text{ may be implied by a correct CV}$
B1:	awrt 7.82
M1:	Attempting to find $\sum \frac{(O_i - E_i)^2}{E_i}$ or $\sum \frac{O_i^2}{E_i} - N$ may be implied by awrt 8.12
A1:	awrt 8.12
A1:	Evaluating the outcome of a model by drawing a correct inference in context
b)	
B1:	Explaining why there are 4 classes
B1:	Explanation of why 2 is subtracted
c)	
B1:	Correct hypotheses for the refined model
B1:	The CV awrt 5.99 and drawing the correct inference for the refined model

		4	mn y
			MW. Mymatha AOs
Question	Scheme	Marks	AOs
4	Po(2.3) $n = 100 \ \mu = 2.3 \ \sigma^2 = 2.3$		
	$\overline{\mathbf{x}} = \mathbf{y}(2, 2, 3)$	M1	3.1a
	$\text{CLT} \Rightarrow \overline{X} \approx \text{N}\left(2.3, \frac{2.3}{100}\right)$	A1	1.1b
	$P(\bar{X} > 2.5) = P\left(Z > \frac{2.5 - 2.3}{\sqrt{0.023}}\right)$	M1	3.4
	= P(Z > 1.318)		
	= 0.09632	A1	1.1b
		(4)	
		(4 r	narks)
Notes:			
	realising the need to use the CLT to set $\overline{X} \approx$ normal with correct me	ean	
	y be implied by using the correct normal distribution fully correct normal stated or used		
		2.3	
M1: Use	e of the normal model to find P($\overline{X} > 2.5$). Can be awarded for $\frac{2.5 - \sqrt{0.00}}{\sqrt{0.000}}$	$\frac{2.3}{23}$	
	awrt 1.32		
A1: awi	rt 0.0963		

			MMM.M.
			NNN MY
Question	Scheme	Marks	AOs
5(a)	$\binom{7}{1} \times 0.15^2 \times (0.85)^6$	M1	3.3
	= 0.05940 = awrt 0.0594	A1	1.1b
		(2)	
(b)	The model is only valid if:		
	the games (trials) are independent	B1	3.5b
	the probability of winning a prize, 0.15, is constant for each game	B1	3.5b
		(2)	
(c)	$18 = \frac{r}{p}$ and $6^2 = \frac{r(1-p)}{p^2}$	M1	3.1b
	$\frac{10-p}{p}$ and $\frac{0-p}{p^2}$	A1	1.1b
	Solving: $2p = 1 - p$	M1	1.1b
	$p = \frac{1}{3}$ (> 0.15) so Mary has the greater chance of winning a prize	A1	3.2a
		(4)	
		(8 n	narks)
otes:			
n 8 th trial e $\binom{7}{1} 0.15 \times ($	selecting an appropriate model negative binomial or B(7, 0.15) with a s.g. $(0.85)^6 \times 0.15$ Allow $\binom{7}{1} 0.85 \times (0.15)^6 \times 0.85$ may be implied by awrt t 0.0594		ccess
(b)			
	ing the first assumption that games are independent ing the second assumption that the probability remains constant		
(c) M1: For A1: Bot	ming an equation for the mean or for the standard deviation h equations correct ving the 2 equations leading to $2p = 1 - p$		
	$p = \frac{1}{3}$ followed by a correct deduction		
	3		

uestion	Scheme	Marks	AOs
6(a)	$G_X(1) = 1$ gives	M1	2.1
	$k \times 6^2 = 1$ so $k = \frac{1}{36}$ *	A1*cso	1.1b
		(2)	
(b)	$P(X=3) = \text{coefficient of } t^3 \text{ so } G_X(t) = k(+4t^3)$	M1	1.1b
	$[P(X=3)=]$ $\frac{1}{9}$	A1	1.1b
		(2)	
(c)	$G'_{X}(t) = 2k(3+t+2t^{2}) \times (1+4t)$	M1	2.1
	$E(X) = G'_X(1) = 2k(3+1+2) \times (1+4)$	M1	1.1b
	$=\frac{5}{3}$	A1	1.1b
	$G_X''(t) = 2k \left[(3+t+2t^2) \times 4 + (1+4t)^2 \right]$	M1 A1	2.1 1.1b
	$G''_{X}(1) = 2k[6 \times 4 + 5^{2}] \qquad \left\{ = \frac{49}{18} \right\}$	M1	1.1b
	Var(X) = $G''_X(1) + G'_X(1) - [G'_X(1)]^2 = \frac{49}{18} + \frac{5}{3} - \frac{25}{9}$	M1	2.1
	$=\frac{29}{18}*$	A1*cso	1.1b
		(8)	
(d)	$G_{2X+1}(t) = \frac{t}{36} \left(3 + t^2 + 2\left(t^2\right)^2 \right)^2 \qquad [\times t \text{ or sub } t^2 \text{ for } t]$	M1	3.1a
	$= G_{2X+1}(t) = \frac{t}{36} (3 + t^2 + 2t^4)^2$	A1	1.1b
		(2)	
		(14 r	narks)

Question 6 notes continued:

(c)

M1: Attempting to find $G_X(t)$. Allow Chain rule or multiplying out the brackets and differentiating

www.mymathscloud.com

M1: Substituting t = 1 into $G'_X(t)$

A1:
$$\frac{5}{3}$$
, allow awrt 1.67

- **M1:** Attempting to find $G''_X(t)$
- A1: $2k \left[\left(3 + t + 2t^2 \right) \times 4 + \left(1 + 4t \right)^2 \right]$ or $k(48t^2 + 24t + 26)$ o.e.
- A1: $2k[6 \times 4 + 5^2]$ o.e.
- **M1:** Using $G''_{X}(1) + G'_{X}(1) [G'_{X}(1)]^{2}$ to find the Variance
- A1*: $\frac{29}{18}$ cso
- (d)

M1: Realising the need to $\times t$ or sub t^2 for t

A1: $\frac{t}{36}(3+t^2+2t^4)^2$, or $\frac{t}{36}(9+6t^2+13t^4+4t^6+4t^8)$ o.e.

		h	mn
			AOs
uestion	Scheme	Marks	AOs
7(a)	$X \sim B(20, 0.2)$ and seek <i>c</i> such that $P(X \le c) < 0.10$	M1	3.3
	[P($X \le 1$) = 0.0692] CR is $X \le 1$	A1	1.1b
		(2)	
(b)	Size = 0.0692	B1ft	1.2
		(1)	
(c)	$Y =$ no. of spins until red obtained so $Y \sim \text{Geo}(0.2)$	M1	3.3
	$\mu = \frac{1}{p}$ so if $p < 0.2$ then mean is <u>larger</u> so seek <i>d</i> so that	M1	2.4
	$\frac{P(Y \ge d) < 0.10}{P(Y \ge d) = (0.8)^{d-1}}$	N(1	2.4
		M1	3.4
	$(0.8)^{d-1} < 0.10 \implies d-1 > \frac{\log(0.1)}{\log(0.8)}$	M1	1.1b
	<i>d</i> > 11.3	Al	1.1b
	$CR \text{ is } Y \ge 12$	Al	2.2b
		(6)	
(d)	Size = $[0.8^{11} = 0.085899] = 0.0859$	B1	1.1b
		(1)	
(e)(i)	Power = P(reject H ₀ when it is false) = P($X \le 1 X \sim B(20, p)$)	M1	2.1
	$= (1-p)^{20} + 20(1-p)^{19} p$	M1	1.1b
	$= (1-p)^{19}(1+19p) *$	A1*cso	1.1b
(ii)	$Power = (1-p)^{11}$	B1	1.1b
		(4)	
(f)	Sam's test has smaller P(Type I error) (or size) so is better	B1	2.2a
	Power of Sam's test = 0.1755	B1	1.1b
	Power of Tessa's test = $0.85^{11} = 0.1673$	B1	1.1b
	So for $p = 0.15$ Sam's test is recommended	B1	2.2b
		(4)	
		(18 r	narks)

	ion 7 notes:
	N. Myn
-	ion 7 notes:
(a) M1: A1:	Realising the need to use the model Using B(20,0.2) with method for finding the CR or implied by a correct CR $X \le 1$ or $X \le 2$
(b) B1:	awrt 0.0692
(c) M1: M1:	Realising that the model Geo(0.2) is needed. This may be written or used Realising the key step that they need to find $P(Y \ge d) < 0.10$
M1:	Using the model $(0.8)^{d-1}$
M1:	Using the model $(0.8)^{d-1} < 0.10$ and finding a method to solve leading to a value/range of
	values for d
A1: A1:	For $d > 11.3.$ For $Y \ge 12$ or $Y > 11$ (a correct inference)
(d)	
B1ft:	awrt 0.0692. ft their answer to part (c)
(e)(i) M1: M1:	Using B(20, <i>p</i>) and realizing they need to find P($X \le 1$) o.e. This may be used or written Using P($X = 0$) + P($X = 1$)
A1*:	Fully correct proof (no errors) cso
(ii) B1:	For $(1-p)^{11}$
	$\operatorname{FOI}\left(1-p\right)$
(f) B1: B1:	Making a deduction about the tests using the answers to part(b) and (d) awrt 0.0176
B1: B1:	awrt 0.167 A correct inference about which test is recommended